NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn
نویسندگان
چکیده
BACKGROUND NMDA receptors expressed by spinal cord neurons in the superficial dorsal horn are involved in the development of chronic pain associated with inflammation and nerve injury. The superficial dorsal horn has a complex and still poorly understood circuitry that is mainly populated by inhibitory and excitatory interneurons. Little is known about how NMDA receptor subunit composition, and therefore pharmacology and voltage dependence, varies with neuronal cell type. NMDA receptors are typically composed of two NR1 subunits and two of four NR2 subunits, NR2A-2D. We took advantage of the differences in Mg2+ sensitivity of the NMDA receptor subtypes together with subtype preferring antagonists to identify the NR2 subunit composition of NMDA receptors expressed on lamina II inhibitory and excitatory interneurons. To distinguish between excitatory and inhibitory interneurons, we used transgenic mice expressing enhanced green fluorescent protein driven by the GAD67 promoter. RESULTS Analysis of conductance ratio and selective antagonists showed that lamina II GABAergic interneurons express both the NR2A/B containing Mg2+ sensitive receptors and the NR2C/D containing NMDA receptors with less Mg2+ sensitivity. In contrast, excitatory lamina II interneurons express primarily NR2A/B containing receptors. Despite this clear difference in NMDA receptor subunit expression in the two neuronal populations, focally stimulated synaptic input is mediated exclusively by NR2A and 2B containing receptors in both neuronal populations. CONCLUSIONS Stronger expression of NMDA receptors with NR2C/D subunits by inhibitory interneurons compared to excitatory interneurons may provide a mechanism to selectively increase activity of inhibitory neurons during intense excitatory drive that can provide inhibitory feedback.
منابع مشابه
Functional identification of NR2 subunits contributing to NMDA receptors on substance P receptor-expressing dorsal horn neurons
NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers typically composed of two NR1 and two of four NR2 subunits: NR2A-2D. Mice lacking specific NR2 subunits show deficits in pain transmission yet subunit location in the spinal cord remains unclear. We have combined electrophysiological and pharmacological approaches to investigate the ...
متن کاملXenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons
BACKGROUND The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory sy...
متن کاملDistinct populations of spinal cord lamina II interneurons expressing G-protein-gated potassium channels.
Noxious stimuli are sensed and carried to the spinal cord dorsal horn by A delta and C primary afferent fibers. Some of this input is relayed directly to supraspinal sites by projection neurons, whereas much of the input impinges on a heterogeneous population of interneurons in lamina II. Previously, we demonstrated that G-protein-gated inwardly rectifying potassium (GIRK) channels are expresse...
متن کاملDifferential projections of excitatory and inhibitory dorsal horn interneurons relaying information from group II muscle afferents in the cat spinal cord.
Dorsal horn interneurons with input from group II muscle spindle afferents are components of networks involved in motor control. Thirteen dorsal horn interneurons with monosynaptic group II input were characterized electrophysiologically and labeled intracellularly with Neurobiotin. Their axonal projections were traced, and neurotransmitter content was established by using immunocytochemistry. ...
متن کاملA quantitative study of neuronal nitric oxide synthase expression in laminae I–III of the rat spinal dorsal horn
Nitric oxide produced by neuronal nitric oxide synthase (nNOS) in the spinal cord is required for development of hyperalgesia in inflammatory and neuropathic pain states. nNOS is expressed by some dorsal horn neurons, and an early study that used a histochemical method to identify these cells suggested that they were mainly inhibitory interneurons. We have carried out a quantitative analysis of...
متن کامل